On the number of zeros of Abelian integral for some Liénard system of type (4,3)
Xianbo Sun,
Jing Su and
Maoan Han
Chaos, Solitons & Fractals, 2013, vol. 51, issue C, 1-12
Abstract:
In this article, we study the Abelian integral M(h) corresponding to the following Liénard system,x˙=y,y˙=x3(x-1)+ε(a+bx+cx2+x3)y,where 0<ε≪1, a, b and c are real bounded parameters. Using the expansion of M(h) and a new algebraic criterion developed in Maeñosas and Villadelprat (2011) [6], we found that the lower and upper bounds of the maximal number of zeros of M are respectively 4 and 5. Hence, the above system can have 4 limit cycles and has at most 5 limit cycles bifurcating from the corresponding period annulus. The results obtained are new for this kind of Liénard system as we known.
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077913000313
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:51:y:2013:i:c:p:1-12
DOI: 10.1016/j.chaos.2013.02.003
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().