Analytical solutions of nonlinear Schrödinger equation with distributed coefficients
E. Kengne
Chaos, Solitons & Fractals, 2014, vol. 61, issue C, 56-68
Abstract:
We combine the F-expansion method with the homogeneous balance principle to build a strategy to find analytical solitonic and periodic wave solutions to a generalized nonlinear Schrödinger equation with distributed coefficients, linear gain/loss, and nonlinear gain/absorption. In the case of a dimensionless effective Gross–Pitaevskii equation which describes the evolution of the wave function of a quasi-one-dimensional cigar-shaped Bose–Einstein condensate, the building strategy is applied to generate analytical solutions.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914000319
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:61:y:2014:i:c:p:56-68
DOI: 10.1016/j.chaos.2014.02.007
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().