Least squares shadowing sensitivity analysis of a modified Kuramoto–Sivashinsky equation
Patrick J. Blonigan and
Qiqi Wang
Chaos, Solitons & Fractals, 2014, vol. 64, issue C, 16-25
Abstract:
Computational methods for sensitivity analysis are invaluable tools for scientists and engineers investigating a wide range of physical phenomena. However, many of these methods fail when applied to chaotic systems, such as the Kuramoto–Sivashinsky (K–S) equation, which models a number of different chaotic systems found in nature. The following paper discusses the application of a new sensitivity analysis method developed by the authors to a modified K–S equation. We find that least squares shadowing sensitivity analysis computes accurate gradients for solutions corresponding to a wide range of system parameters.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914000460
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:64:y:2014:i:c:p:16-25
DOI: 10.1016/j.chaos.2014.03.005
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().