Complexity and asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells
D.T. Mihailović,
V. Kostić,
I. Balaž and
Lj. Cvetković
Chaos, Solitons & Fractals, 2014, vol. 65, issue C, 30-43
Abstract:
We have considered the complexity and asymptotic stability in the process of biochemical substance exchange in a coupled ring of cells. We have used coupled maps to model this process. It includes the coupling parameter, cell affinity and environmental factor as master parameters of the model. We have introduced: (i) the Lempel–Ziv complexity spectrum and (ii) the Lempel–Ziv complexity spectrum highest value to analyze the dynamics of two cell model. The asymptotic stability of this dynamical system using an eigenvalue-based method has been considered. Using these complexity measures we have noticed an “island” of low complexity in the space of the master parameters for the weak coupling. We have explored how stability of the equilibrium of the biochemical substance exchange in a multi-cell system (N=100) is influenced by the changes in the master parameters of the model for the weak and strong coupling. We have found that in highly chaotic conditions there exists space of master parameters for which the process of biochemical substance exchange in a coupled ring of cells is stable.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S096007791400054X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:65:y:2014:i:c:p:30-43
DOI: 10.1016/j.chaos.2014.04.008
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().