An allometric scaling relation based on logistic growth of cities
Yanguang Chen
Chaos, Solitons & Fractals, 2014, vol. 65, issue C, 65-77
Abstract:
The relationships between urban area and population size have been empirically demonstrated to follow the scaling law of allometric growth. This allometric scaling is based on exponential growth of city size and can be termed “exponential allometry”, which is associated with the concepts of fractals. However, both city population and urban area comply with the course of logistic growth rather than exponential growth. In this paper, I will present a new allometric scaling based on logistic growth to solve the above mentioned problem. The logistic growth is a process of replacement dynamics. Defining a pair of replacement quotients as new measurements, which are functions of urban area and population, we can derive an allometric scaling relation from the logistic processes of urban growth, which can be termed “logistic allometry”. The exponential allometric relation between urban area and population is the approximate expression of the logistic allometric equation when the city size is not large enough. The proper range of the allometric scaling exponent value is reconsidered through the logistic process. Then, a medium-sized city of Henan Province, China, is employed as an example to validate the new allometric relation. The logistic allometry is helpful for further understanding the fractal property and self-organized process of urban evolution in the right perspective.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (11)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077914000794
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:65:y:2014:i:c:p:65-77
DOI: 10.1016/j.chaos.2014.04.017
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().