Relationship between chromatin complexity and nuclear envelope circularity in hippocampal pyramidal neurons
Igor Pantic,
Milos Basailovic,
Jovana Paunovic and
Senka Pantic
Chaos, Solitons & Fractals, 2015, vol. 76, issue C, 271-277
Abstract:
In this study we tested the existence and strength of the relationship between circularity of nuclear envelope and mathematical parameters of chromatin structure. Coronal sections of the brain were made in 10 male albino mice. The brain tissue was stained using a modification of Feulgen method for DNA visualization. A total of 200 hippocampal pyramidal neurons (20 per animal) were visualized using DEM 200 High-Speed Color CMOS Chip and Olympus CX21FS1 microscope. Circularity of the nuclear membrane was calculated in ImageJ (NIH, USA) after the nuclear segmentation, based on the freehand selection of the nuclear regions of interest. Circularity was determined from the values of area and perimeter. For each chromatin structure, using fractal and grey level co-occurrence matrix (GLCM) algorithms, we determined the values of fractal dimension, lacunarity, angular second moment, GLCM entropy, inverse difference moment, GLCM correlation, and GLCM contrast. It was found that circularity is in a significant correlation (p<0.05) with fractal dimension as the main parameter of fractal complexity analysis. Also, circularity was in a very strong relationship (p<0.001) with certain parameters of grey level co-occurrence matrix such as the angular second moment and GLCM correlation. This is the first study to indicate that nuclear shape is significantly related to mathematical parameters of higher chromatin organization. Also, it seems that circularity of the nuclear envelope is a good predictor of certain features of chromatin structure. Our study suggests that GLCM algorithm, as well as circularity analysis, have potentially substantial application in future cellular physiology research.
Date: 2015
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915001204
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:76:y:2015:i:c:p:271-277
DOI: 10.1016/j.chaos.2015.04.009
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().