Bifurcation analysis and chaos control of the modified Chua’s circuit system
Jihua Yang and
Liqin Zhao
Chaos, Solitons & Fractals, 2015, vol. 77, issue C, 332-339
Abstract:
From the view of bifurcation and chaos control, the dynamics of modified Chua’s circuit system are investigated by a delayed feedback method. Firstly, the local stability of the equilibria is discussed by analyzing the distribution of the roots of associated characteristic equation. The regions of linear stability of equilibria are given. It is found that there exist Hopf bifurcation and Hopf-zero bifurcation when the delay passes though a sequence of critical values. By using the normal form method and the center manifold theory, we derive the explicit formulas for determining the direction and stability of Hopf bifurcation. Finally, chaotic oscillation is converted into a stable equilibrium or a stable periodic orbit by designing appropriate feedback strength and delay. Some numerical simulations are carried out to support the analytic results.
Keywords: Stability; Hopf bifurcation; Hopf-zero bifurcation; Chaos control (search for similar items in EconPapers)
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077915001642
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:77:y:2015:i:c:p:332-339
DOI: 10.1016/j.chaos.2015.05.028
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().