EconPapers    
Economics at your fingertips  
 

Dynamics of a delayed business cycle model with general investment function

Driss Riad, Khalid Hattaf and Noura Yousfi

Chaos, Solitons & Fractals, 2016, vol. 85, issue C, 110-119

Abstract: The aim of this paper is to study the dynamics of a delayed business cycle model with general investment function. The model describes the interaction of the gross product and capital stock. Furthermore, the delay represents the time between the decision of investment and implementation. Firstly, we show that the model is well posed by proving the global existence and boundedness of solutions. Secondly, we determine the economic equilibrium of the model. By analyzing the characteristic equation, we investigate the stability of the economic equilibrium and the local existence of Hopf bifurcation. Also, the direction of the Hopf bifurcation and the stability of the bifurcating periodic solutions are derived by applying the normal form method and center manifold theory. Moreover, the global existence of bifurcating periodic solutions is established by using the global Hopf bifurcation theory. Finally, our theoretical results are illustrated with some numerical simulations.

Keywords: Business cycle; Kaldor–Kalecki model; Delay; Hopf bifurcation (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916300133
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:85:y:2016:i:c:p:110-119

DOI: 10.1016/j.chaos.2016.01.022

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:85:y:2016:i:c:p:110-119