EconPapers    
Economics at your fingertips  
 

Coexistence of multiple attractors and crisis route to chaos in a novel memristive diode bidge-based Jerk circuit

Z.T. Njitacke, J. Kengne, H.B. Fotsin, A. Nguomkam Negou and D. Tchiotsop

Chaos, Solitons & Fractals, 2016, vol. 91, issue C, 180-197

Abstract: In the present paper, a new memristor based oscillator is obtained from the autonomous Jerk circuit [Kengne et al., Nonlinear Dynamics (2016) 83: 751̶765] by substituting the nonlinear element of the original circuit with a first order memristive diode bridge. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. Various nonlinear analysis tools such as phase portraits, time series, bifurcation diagrams, Poincaré section and the spectrum of Lyapunov exponents are exploited to characterize different scenarios to chaos in the novel circuit. It is found that the system experiences period doubling and crisis routes to chaos. One of the major results of this work is the finding of a window in the parameters’ space in which the circuit develops hysteretic behaviors characterized by the coexistence of four different (periodic and chaotic) attractors for the same values of the system parameters. Basins of attractions of various coexisting attractors are plotted showing complex basin boundaries. As far as the authors’ knowledge goes, the novel memristive jerk circuit represents one of the simplest electrical circuits (no analog multiplier chip is involved) capable of four disconnected coexisting attractors reported to date. Both PSpice simulations of the nonlinear dynamics of the oscillator and laboratory experimental measurements are carried out to validate the theoretical analysis.

Keywords: Memristor based jerk circuit; Bifurcation analysis; Coexistence of multiple attractors; Basins of attraction; Pspice simulation; Experimental study (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916301862
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:91:y:2016:i:c:p:180-197

DOI: 10.1016/j.chaos.2016.05.011

Access Statistics for this article

Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros

More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().

 
Page updated 2025-03-19
Handle: RePEc:eee:chsofr:v:91:y:2016:i:c:p:180-197