Qualitative and quantitative aspects of synchronization in coupled CA1 pyramidal neurons
Jing Wang,
Weijie Ye,
Shenquan Liu,
Bo Lu and
Xiaofang Jiang
Chaos, Solitons & Fractals, 2016, vol. 93, issue C, 32-38
Abstract:
We investigated the synchronization phenomena of two electrically coupled CA1 pyramidal neurons on the basis of the coupling strength and capacitance. By means of the distribution of phase differences and ISI-distances, synchronization could be described from the qualitative and quantitative aspects, respectively. Firstly, based on the distribution of phase differences, asynchronous and multiple synchronous states such as in-phase and out-of-phase were observed. We found that both of coupling strength and capacitance could induce the transitions of synchronization states, and the distribution of synchronization states was illustrated in a two-dimensional parameter plane. Secondly, synchronization states were quantitatively indicated by ISI-distance. These results could exhibit the level of the same synchronization states arising in different parameter ranges, complementing the deficiency of phase differences.
Keywords: Synchronization; Gap junction; Phase difference; ISI-distance; CA1 Pyramidal neuron (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916302867
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:93:y:2016:i:c:p:32-38
DOI: 10.1016/j.chaos.2016.09.024
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().