Benjamin–Feir instabilities on directed networks
Francesca Di Patti,
Duccio Fanelli,
Filippo Miele and
Timoteo Carletti
Chaos, Solitons & Fractals, 2017, vol. 96, issue C, 8-16
Abstract:
The Complex Ginzburg–Landau equation is studied assuming a directed network of coupled oscillators. The asymmetry makes the spectrum of the Laplacian operator complex, and it is ultimately responsible for the onset of a generalized class of topological instability, reminiscent of the Benjamin–Feir type. The analysis is initially carried out for a specific class of networks, characterized by a circulant adjacency matrix. This allows us to delineate analytically the domain in the parameter space for which the generalized instability occurs. We then move forward to considering the family of non linear oscillators coupled via a generic direct, though balanced, graph. The characteristics of the emerging patterns are discussed within a self-consistent theoretical framework.
Keywords: Pattern formation in reaction-diffusion systems; Coupled oscillators; Benjamin–Feir instability; Complex networks, (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0960077916303253
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:chsofr:v:96:y:2017:i:c:p:8-16
DOI: 10.1016/j.chaos.2016.11.018
Access Statistics for this article
Chaos, Solitons & Fractals is currently edited by Stefano Boccaletti and Stelios Bekiros
More articles in Chaos, Solitons & Fractals from Elsevier
Bibliographic data for series maintained by Thayer, Thomas R. ().