Patchiness and bistability in the comprehensive cyanobacterial model (CCM)
H. Serizawa,
T. Amemiya and
K. Itoh
Ecological Modelling, 2009, vol. 220, issue 6, 764-773
Abstract:
We analyzed spatiotemporal dynamics of cyanobacteria using a four-component mathematical model with nutrients, unicellular algae, colonial algae and herbivorous zooplankton. One of the astonishing abilities of cyanobacteria is the morphological change from the unicellular type to the colonial or filamentous type in response to grazing activities of zooplankton, the phenomenon known as phenotypic plasticity. Our model, referred to as comprehensive cyanobacterial model (CCM), includes the effects of phenotypic plasticity. Depending on parameter values, CCM exhibits not only bistability but also limit cycle oscillations without showing the paradox of enrichment, which has been a controversy among mathematical ecologists. Further, CCM is modified to reaction–advection–diffusion equations, the simulation results of which indicate that the ratio of the lateral diffusivity to the turbulent velocity significantly affects the appearance of patchiness patterns.
Keywords: Algal bloom; Bistability; Limit cycle oscillation; Patchiness; Phenotypic plasticity; Regime shift (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030438000800598X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:6:p:764-773
DOI: 10.1016/j.ecolmodel.2008.12.015
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().