Modelling the spatial structure of forest stands by multivariate point processes with hierarchical interactions
Pavel Grabarnik and
Aila Särkkä
Ecological Modelling, 2009, vol. 220, issue 9, 1232-1240
Abstract:
A stochastic model is applied to describe the spatial structure of a forest stand. We aim at quantifying the strength of the competition process between the trees in terms of interaction within and between different size classes of trees using multivariate Gibbs point processes with hierarchical interactions introduced in [Högmander, H., Särkkä, A., 1999. Multitype spatial point patterns with hierarchical interactions. Biometrics 55, 1051–1058]. The new model overcomes the main limitation of the traditional use of the Gibbs models allowing to describe systems with non-symmetric interactions between different objects. When analyzing interactions between neighbouring trees it is natural to assume that the size of a tree determines its hierarchical level: the largest trees are not influenced by any other trees than the trees in the same size class, while trees in the other size classes are influenced by the other trees in the same class as well as by all larger trees. In this paper, we describe a wide range of Gibbs models with both hierarchical and non-hierarchical interactions as well as a simulation algorithm and a parameter estimation procedure for the hierarchical models. We apply the hierarchical interaction model to the analysis of forest data consisting of locations and diameters of tree stems.
Keywords: Forest ecosystem; Hierarchical interaction function; Inter-tree competition; Marked Gibbs point processes; Pseudo-likelihood; Markov chain Monte Carlo simulation; Spatial patterns; Spatial point processes (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380009001537
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:220:y:2009:i:9:p:1232-1240
DOI: 10.1016/j.ecolmodel.2009.02.021
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().