Modelling dynamics of soil organic matter under different historical land-use management techniques in European Russia
Maxim Bobrovsky,
Alexander Komarov,
Alexey Mikhailov and
Larisa Khanina
Ecological Modelling, 2010, vol. 221, issue 6, 953-959
Abstract:
We have analyzed an influence of the traditional agricultural system techniques on the soil organic matter dynamics using the model of carbon and nitrogen cycling in forest ecosystems EFIMOD linked with the model of SOM dynamics ROMUL. Forest stands on the loamy soddy-podzolic soils (Alfisoils) located in the Central European Russia have been taken for the case study. The following land-use management scenarios were simulated: (a) slash-and-burn system with 3 years for crops and 120, 60 and 25 years for forest; (b) three-field crop rotation system with organic fertilization (dung) every 3 and 9 years and the same rotation without fertilization; and (c) short-term field-forest shifting system with 10 years for crops and 10 and 25 years for forest. Analysis of the results showed that the frequency of agricultural use in mixed field-forest land-use systems was crucial for soil organic matter dynamics. Under the short interval between agriculture, the stocks of all soil organic matter pools decreased. Under all scenarios except the three-field crop rotation with fertilization and the slash-and-burn system with 120 years for forest, a strong reduction of soil organic matter occurred after 30–130 years of the agricultural impacts. The highest reduction rates were modelled under the short-term field-forest shifting system and three-field rotation without fertilization. Fertilization led to stabilization of soil organic matter pools and gave a possibility for a long time stable agricultural use.
Keywords: Soil organic matter (SOM); Slash-and-burn system; Field-forest shifting system; Three-field crop rotation; EFIMOD; ROMUL (search for similar items in EconPapers)
Date: 2010
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030438000900859X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:221:y:2010:i:6:p:953-959
DOI: 10.1016/j.ecolmodel.2009.12.013
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().