EconPapers    
Economics at your fingertips  
 

Solving the probabilistic reserve selection problem

Alain Billionnet

Ecological Modelling, 2011, vol. 222, issue 3, 546-554

Abstract: The Reserve Selection Problem consists in selecting certain sites among a set of potential sites for biodiversity protection. In many models of the literature, the species present and able to survive in each site are supposed to be known. Here, for every potential site and for every species considered, only the probability that the species survives in the site is supposed to be known. The problem to select, under a budgetary constraint, a set of sites which maximizes the expected number of species is known in the literature under the name of probabilistic reserve selection problem. In this article, this problem is studied with species weighting to deal differently with common species and rare species. A spatial constraint is also considered preventing to obtain too fragmented reserve networks. As in Polasky et al. (2000), the problem is formulated by a nonlinear mathematical program in Boolean variables. Camm et al. (2002) developed a mixed-integer linear programming approximation that may be solved with standard integer programming software. The method gives tight approximate solutions but does not allow to tell how far these solutions are from the optimum. In this paper, a slightly different approach is proposed to approximate the problem. The interesting aspect of the approach, which also uses only standard mixed-integer programming software, is that it leads, not only to an approximate solution, but also to an upper limit on the true optimal value. In other words, the method gives an approximate solution with a guarantee on its accuracy. The linear reformulation is based on an upper approximation of the logarithmic function by a piecewise-linear function. The approach is very effective on artificial instances that include up to 400 sites and 300 species. Within an average CPU time of about 12min, near-optimal solutions are obtained with an average relative error, in comparison to the optimum, of less than 0.2%.

Keywords: Reserve site selection; Probabilistic model; Proximity; Integer linear programming; Experiments (search for similar items in EconPapers)
Date: 2011
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380010005508
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:222:y:2011:i:3:p:546-554

DOI: 10.1016/j.ecolmodel.2010.10.009

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:222:y:2011:i:3:p:546-554