The Scaled Subspaces Method: A new trait-based approach to model communities of populations with largely inhomogeneous density
Marco Castellani,
Selina Våge,
Espen Strand,
T. Frede Thingstad and
Jarl Giske
Ecological Modelling, 2013, vol. 251, issue C, 173-186
Abstract:
We present a new individual-based approach to model populations of largely inhomogeneous densities. By monitoring different populations at a spatial scale which is inversely proportional to the maximum expected concentration, the Scaled Subspaces Method solves the problem of demographic explosion of the most numerous species. It is intuitively similar to the experimental practice of changing the magnification of a microscope depending on the size-class of organisms inspected, and retains the possibility for uniform biological descriptions across scales. We use this method to simulate a pelagic microbial mixotrophic food web, where the most abundant species has population densities up to five orders of magnitude higher than the rarest species. The model generates biologically plausible and highly consistent predictions of biomass distribution across this density spectrum. Individual-based community models are affected by the possibility of artificial extinctions. We discuss theoretically and confirm experimentally this possibility, and show that this problem can be overcome through the use of large populations, genetic mutations, and periodical random reintroduction of lost species or traits. We also show that the proposed individual-based model produces the same solutions as a state-variable model of the same ecological scenario. This indicates that the predictions of the two models are independent of implementation issues, and allows using them interchangeably according to convenience. Overall, the study proves the viability of the Scaled Subspaces Method, and provides useful insights on its functioning and parameterization.
Keywords: Modelling; Trait-based; Individual-based; Scaled subspaces; Microbial food web (search for similar items in EconPapers)
Date: 2013
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380012005728
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:251:y:2013:i:c:p:173-186
DOI: 10.1016/j.ecolmodel.2012.12.006
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().