Global sensitivity analysis of an end-to-end marine ecosystem model of the North Sea: Factors affecting the biomass of fish and benthos
David J. Morris,
Douglas C. Speirs,
Angus I. Cameron and
Michael R. Heath
Ecological Modelling, 2014, vol. 273, issue C, 251-263
Abstract:
Comprehensive analysis of parameter and driver sensitivity is key to establishing the credibility of models representing complex systems. This is especially so for models of natural systems where experimental manipulation of the real-world to provide controlled validation data is not possible. End-to-end ecosystem models (nutrients to birds and mammals) of marine ecosystems fall into this category with applications for evaluating the effects of climate change and fishing on nutrient fluxes and the abundances of flora and fauna. Here we present results of both ‘one-at-a-time’ (OAT) and variance based global sensitivity analyses (GSA) of the fish and fishery aspects of StrathE2E, an end-to-end ecosystem model of the North Sea. The sensitivity of the model was examined with respect to internal biological parameters, and external drivers related to climate and human activity. The OAT Morris method was first used to screen for factors most influential on model outputs. The Sobol GSA method was then used to calculate quantitative sensitivity indices. The results indicated that the fish and shellfish components of the model (demersal and pelagic fish, filter/deposit and scavenge/carnivore feeding benthos) were influenced by different sets of factors. Harvesting rates were highly influential on demersal and pelagic fish biomasses. Suspension/deposit feeding benthos were directly sensitive to changes in temperature, while the temperature acted indirectly on pelagic fish through the connectivity between model components of the food web. Biomass conversion efficiency was the most important factor for scavenge/carnivorous feeding benthos. The results indicate the primacy of fishing as the most important process affecting total fish biomass, together with varying responses to environmental factors which may be relevant in the context of climate change. The non-linear responses and parameter interactions identified by the analysis also highlight the necessity to use global rather than local methods for the sensitivity analysis of ecosystem models.
Keywords: Climate change; Ocean acidification; Global sensitivity analysis; Morris sensitivity method; Sobol sensitivity method; North Sea (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (13)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S030438001300567X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:273:y:2014:i:c:p:251-263
DOI: 10.1016/j.ecolmodel.2013.11.019
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().