Applying network methods to acoustic telemetry data: Modeling the movements of tropical marine fishes
J.T. Finn,
J.W. Brownscombe,
C.R. Haak,
S.J. Cooke,
R. Cormier,
T. Gagne and
A.J. Danylchuk
Ecological Modelling, 2014, vol. 293, issue C, 139-149
Abstract:
Modeling animal movements is fundamental to animal ecology as it provides the foundation for further exploration into mechanisms affecting individual and population-level processes. In the last few decades, biotelemetry has enabled scientists to track the movements of marine life across a variety of scales. However, the use of such technology is progressing faster than the analytical techniques for modeling movement patterns. In summer 2012, we deployed an acoustic telemetry array around Culebra, Puerto Rico, consisting of 48 remote receivers that can detect coded transmissions sent by tags implanted in fish. We surgically implanted transmitters in bonefish (n=28), great barracuda (n=2) and permit (n=1) as part of a multi-year study. In January 2013, we downloaded over 850,000 detections from 39 receivers for 31 fish (several receivers had zero fish detections, and two receivers were not downloaded), and used that six-month data set to explore how graph theory and network analysis can be used to model the movement ecology of the tagged fish. We analyzed this data as two types of graphs. First, a bipartite graph was constructed by linking each fish with an edge weighted by the number of detections of that fish by that receiver. Bipartite graphs are not explicitly spatial, but rather represent which fish associate with which receivers. Second, spatial movement graphs for individuals were built by linking receivers (nodes) by edges with the number of times each fish moved along that edge as weights. The bipartite graph identified groups of fish visiting the same sites, and groups of sites visited by the same fish. Of the six community detection algorithms used, Multilevel, Fast-Greedy, and Walk-Trap performed best, with similar module partitions and modularity scores. All three of these algorithms produced modules (groups) that appear to reflect working hypotheses related to the coastal bathymetry, habitat types, and associated movement ecology of the tagged species. Spatial movement graphs were very different for each fish examined and reflect behavioral differences. Fish exhibited various movement patterns, some showing the pattern of a central place forager (bonefish), while others cruised along a territory (great barracuda and permit).
Keywords: Acoustic tagging; Fish movement; Social network analysis; Bipartite graphs; Directed graphs (search for similar items in EconPapers)
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380013006017
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:293:y:2014:i:c:p:139-149
DOI: 10.1016/j.ecolmodel.2013.12.014
Access Statistics for this article
Ecological Modelling is currently edited by Brian D. Fath
More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().