EconPapers    
Economics at your fingertips  
 

Dynamic energy budget of endemic and critically endangered bivalve Pinna nobilis: A mechanistic model for informed conservation

Ines Haberle, Nina Marn, Sunčana Geček and Tin Klanjšček

Ecological Modelling, 2020, vol. 434, issue C

Abstract: The noble pen shell Pinna nobilis L. is the largest, endemic, critically endangered, and protected bivalve of the Mediterranean Sea. Effective conservation and management strategies for this species highly depend on understanding how environmental change and anthropogenic pressures impact its physiology and thereby ecological function, population persistence, and survival. Dynamic Energy Budget (DEB) theory offers a valuable mechanistic modelling framework for capturing how an organism acquires and utilizes available energy for growth, maturation, development and reproduction throughout its life cycle, while accounting for environmental conditions. In this study we parameterized and compared two types of DEB models using limited literature data: a standard model that accounts for morphological metamorphosis only, and a model that through metabolic acceleration between birth and metamorphosis captures physiological changes occurring in the larval life stage. The model with metabolic acceleration performed better, successfully simulating life history traits, growth, and reproduction of P. nobilis. We used the model to predict how food availability implemented through functional response affects growth, maturation, and reproduction of the species throughout its lifespan. We found that (i) abundant food had little effect on the size at maturation, (ii) maximum fecundity at ultimate age doubled compared to typically lower food availability in the wild, (iii) puberty could not be reached below the food availability corresponding to functional response value of 0.164, and (iv) energy allocated to reproduction was positively correlated with both bivalve size and food availability. Accounting for allometric growth observed in P. nobilis did not affect the findings, prompting us to recommend that isometric growth be assumed when modelling the bivalve using DEB. The model presented here is the first full-life cycle bioenergetic model made for P. nobilis. It can be used standalone for predicting energy budget of individuals at specific environmental conditions, or as a building block for modeling populations and ecosystems under various environmental scenarios. The model can readily incorporate other environmental factors relevant to changes in physiology and energy allocation, such as oxygen and pH.

Keywords: Noble pen shell; Dynamic Energy Budget (DEB) theory; Parameter estimation; Life history; Food availability; Conservation (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304380020302775
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:ecomod:v:434:y:2020:i:c:s0304380020302775

DOI: 10.1016/j.ecolmodel.2020.109207

Access Statistics for this article

Ecological Modelling is currently edited by Brian D. Fath

More articles in Ecological Modelling from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:ecomod:v:434:y:2020:i:c:s0304380020302775