Partial identification of probability distributions with misclassified data
Francesca Molinari
Journal of Econometrics, 2008, vol. 144, issue 1, 81-117
Abstract:
This paper addresses the problem of data errors in discrete variables. When data errors occur, the observed variable is a misclassified version of the variable of interest, whose distribution is not identified. Inferential problems caused by data errors have been conceptualized through convolution and mixture models. This paper introduces the direct misclassification approach. The approach is based on the observation that in the presence of classification errors, the relation between the distribution of the 'true' but unobservable variable and its misclassified representation is given by a linear system of simultaneous equations, in which the coefficient matrix is the matrix of misclassification probabilities. Formalizing the problem in these terms allows one to incorporate any prior information into the analysis through sets of restrictions on the matrix of misclassification probabilities. Such information can have strong identifying power. The direct misclassification approach fully exploits it to derive identification regions for any real functional of the distribution of interest. A method for estimating the identification regions and construct their confidence sets is given, and illustrated with an empirical analysis of the distribution of pension plan types using data from the Health and Retirement Study.
Date: 2008
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (81)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304-4076(07)00256-4
Full text for ScienceDirect subscribers only
Related works:
Working Paper: Partial Identification of Probability Distributions with Misclassified Data (2005) 
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:144:y:2008:i:1:p:81-117
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().