EconPapers    
Economics at your fingertips  
 

Two-step estimation of censored quantile regression for duration models with time-varying regressors

Songnian Chen

Journal of Econometrics, 2023, vol. 235, issue 2, 1310-1336

Abstract: Common duration models are characterized by strong homogeneity and thus are highly restrictive in allowing for how regressors affect the conditional duration distribution. In particular, the implied sign and relative marginal quantile effects remain the same over the entire range of the conditional duration distribution, which rules out general heterogeneous effects in duration data. Quantile regression, which offers a flexible and unified framework that allows for general heterogeneous effects, is particularly well suited to duration analysis. Based on the insights behind the accelerated failure time model (AFT) with time-varying regressors (Cox and Oakes, 1984) and the standard quantile regression model (Koenker and Bassett, 1978), Chen (2019) recently developed a quantile regression framework with time-varying regressors. However, Chen’s (2019) estimator is very difficult to compute because the estimation procedure involves a non-convex and nonlinear high dimensional optimization problem due to censoring and the nonlinearity of the quantile function. In this paper I propose an easy-to-implement two-step quantile regression estimator, which significantly reduces the computational burden. The estimator is shown to be consistent and asymptotically normal. Monte Carlo experiments indicate that our estimator perform well in finite samples.

Keywords: Quantile regression; Censoring; Time-varying regressors; Duration analysis (search for similar items in EconPapers)
JEL-codes: C21 C24 C41 (search for similar items in EconPapers)
Date: 2023
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407622001920
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:235:y:2023:i:2:p:1310-1336

DOI: 10.1016/j.jeconom.2022.09.006

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:1310-1336