Multiplicative factor model for volatility
Yi Ding,
Robert Engle,
Yingying Li and
Xinghua Zheng
Journal of Econometrics, 2025, vol. 249, issue PB
Abstract:
Facilitated with high-frequency observations, we introduce a remarkably parsimonious one-factor volatility model that offers a novel perspective for comprehending daily volatilities of a large number of stocks. Specifically, we propose a multiplicative volatility factor (MVF) model, where stock daily variance is represented by a common variance factor and a multiplicative idiosyncratic component. We demonstrate compelling empirical evidence supporting our model and provide statistical properties for two simple estimation methods. The MVF model reflects important properties of volatilities, applies to both individual stocks and portfolios, can be easily estimated, and leads to exceptional predictive performance in both US stocks and global equity indices.
Keywords: Volatility modeling; Factor model; High-frequency data; High-dimension; Principal component analysis (search for similar items in EconPapers)
JEL-codes: C13 C51 C53 C55 C58 G17 (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407625000132
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000132
DOI: 10.1016/j.jeconom.2025.105959
Access Statistics for this article
Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson
More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().