EconPapers    
Economics at your fingertips  
 

Asymptotic theory for two-way clustering

Luther Yap

Journal of Econometrics, 2025, vol. 249, issue PB

Abstract: This paper proves a new central limit theorem for a sample that exhibits two-way dependence and heterogeneity across clusters. Statistical inference for situations with both two-way dependence and cluster heterogeneity has thus far been an open issue. The existing theory for two-way clustering inference requires identical distributions across clusters (implied by the so-called separate exchangeability assumption). Yet no such homogeneity requirement is needed in the existing theory for one-way clustering. The new result therefore theoretically justifies the view that two-way clustering is a more robust version of one-way clustering, consistent with applied practice. In an application to linear regression, I show that a standard plug-in variance estimator is valid for inference.

Keywords: Two-way clustering; Separate exchangeability (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0304407625000557
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000557

DOI: 10.1016/j.jeconom.2025.106001

Access Statistics for this article

Journal of Econometrics is currently edited by T. Amemiya, A. R. Gallant, J. F. Geweke, C. Hsiao and P. M. Robinson

More articles in Journal of Econometrics from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-05-20
Handle: RePEc:eee:econom:v:249:y:2025:i:pb:s0304407625000557