Johnson's rule, composite jobs and the relocation problem
T.C.E. Cheng and
B.M.T. Lin
European Journal of Operational Research, 2009, vol. 192, issue 3, 1008-1013
Abstract:
Two-machine flowshop scheduling to minimize makespan is one of the most well-known classical scheduling problems. Johnson's rule for solving this problem has been widely cited in the literature. We introduce in this paper the concept of composite job, which is an artificially constructed job with processing times such that it will incur the same amount of idle time on the second machine as that incurred by a chain of jobs in a given processing sequence. This concept due to Kurisu first appeared in 1976 to deal with the two-machine flowshop scheduling problem involving precedence constraints among the jobs. We show that this concept can be applied to reduce the computational time to solve some related scheduling problems. We also establish a link between solving the two-machine flowshop makespan minimization problem using Johnson's rule and the relocation problem introduced by Kaplan. We present an intuitive interpretation of Johnson's rule in the context of the relocation problem.
Keywords: Flowshop; Makespan; Johnson's; rule; Composite; job; Relocation; problem (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(07)01126-5
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:192:y:2009:i:3:p:1008-1013
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().