Style goods pricing with demand learning
Alper Sen and
Alex X. Zhang
European Journal of Operational Research, 2009, vol. 196, issue 3, 1058-1075
Abstract:
For many industries (e.g., apparel retailing) managing demand through price adjustments is often the only tool left to companies once the replenishment decisions are made. A significant amount of uncertainty about the magnitude and price sensitivity of demand can be resolved using the early sales information. In this study, a Bayesian model is developed to summarize sales information and pricing history in an efficient way. This model is incorporated into a periodic pricing model to optimize revenues for a given stock of items over a finite horizon. A computational study is carried out in order to find out the circumstances under which learning is most beneficial. The model is extended to allow for replenishments within the season, in order to understand global sourcing decisions made by apparel retailers. Some of the findings are empirically validated using data from U.S. apparel industry.
Keywords: Pricing; Dynamic; pricing; Revenue; management; Demand; learning (search for similar items in EconPapers)
Date: 2009
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00400-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:196:y:2009:i:3:p:1058-1075
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().