A knowledge based approach to loss severity assessment in financial institutions using Bayesian networks and loss determinants
David Häger and
Lasse B. Andersen
European Journal of Operational Research, 2010, vol. 207, issue 3, 1635-1644
Abstract:
Modelling loss severity from rare operational risk events with potentially catastrophic consequences has proved a difficult task for practitioners in the finance industry. Efforts to develop loss severity models that comply with the BASEL II Capital Accord have resulted in two principal model directions where one is based on scenario generated data and the other on scaling of pooled external data. However, lack of relevant historical data and difficulties in constructing relevant scenarios frequently raise questions regarding the credibility of the resulting loss predictions. In this paper we suggest a knowledge based approach for establishing severity distributions based on loss determinants and their causal influence. Loss determinants are key elements affecting the actual size of potential losses, e.g. market volatility, exposure and equity capital. The loss severity distribution is conditional on the state of the identified loss determinants, thus linking loss severity to underlying causal drivers. We suggest Bayesian Networks as a powerful framework for quantitative analysis of the causal mechanisms determining loss severity. Leaning on available data and expert knowledge, the approach presented in this paper provides improved credibility of the loss predictions without being dependent on extensive data volumes.
Keywords: Risk; management; OR; in; financial; institutions; Bayesian; networks; Loss; determinants; Advanced; measurement; approach (search for similar items in EconPapers)
Date: 2010
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377-2217(10)00426-1
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:207:y:2010:i:3:p:1635-1644
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().