A new wavelet-based denoising algorithm for high-frequency financial data mining
Edward Sun and
Thomas Meinl
European Journal of Operational Research, 2012, vol. 217, issue 3, 589-599
Abstract:
Denoising analysis imposes new challenge for mining high-frequency financial data due to its irregularities and roughness. Inefficient decomposition of the systematic pattern (the trend) and noises of high-frequency data will lead to erroneous conclusion as the irregularities and roughness of the data make the application of traditional methods difficult. In this paper, we propose the local linear scaling approximation (in short, LLSA) algorithm, a new nonlinear filtering algorithm based on the linear maximal overlap discrete wavelet transform (MODWT) to decompose the systematic pattern and noises. We show several unique properties of this brand-new algorithm, that are, the local linearity, computational complexity, and consistency. We conduct a simulation study to confirm these properties we have analytically shown and compare the performance of LLSA with MODWT. We then apply our new algorithm with the real high-frequency data from German equity market to investigate its implementation in forecasting. We show the superior performance of LLSA and conclude that it can be applied with flexible settings and suitable for high-frequency data mining.
Keywords: Time series; Data mining; Denoising; High-frequency financial data; Wavelets (search for similar items in EconPapers)
Date: 2012
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (53)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221711009027
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:217:y:2012:i:3:p:589-599
DOI: 10.1016/j.ejor.2011.09.049
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().