Handling negative data in slacks-based measure data envelopment analysis models
Kaoru Tone,
Tsung-Sheng Chang and
Chen-Hui Wu
European Journal of Operational Research, 2020, vol. 282, issue 3, 926-935
Abstract:
This paper proposes slacks-based measure (SBM) data envelopment analysis (DEA) models that handle negative data. Unlike existing negative data allowable DEA models, the proposed SBM DEA models are consistent with ordinary SBM models and units invariant, they handle various types of returns to scale, and they avoid division by zero. These new SBM DEA models transform original negative inputs and outputs into positive counterparts based on a newly defined “base point”. Hence, these models are referred to as the BP-SBM DEA models. In addition to the basic BP-SBM DEA models, this research further develops data-oriented and application-oriented BP-SBM DEA-type models for different application problems involving negative data. Numerical examples are provided to illustrate various aspects and implementation details of these models.
Keywords: Data envelopment analysis; Slacks-based measure; Negative data; BP-SBM; Division by zero irrationality (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (23)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221719308124
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:282:y:2020:i:3:p:926-935
DOI: 10.1016/j.ejor.2019.09.055
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().