A rolling horizon heuristic approach for a multi-stage stochastic waste collection problem
Andrea Spinelli,
Francesca Maggioni,
Tânia Rodrigues Pereira Ramos,
Ana Paula Barbosa-Póvoa and
Daniele Vigo
European Journal of Operational Research, 2025, vol. 323, issue 1, 276-296
Abstract:
In this paper we present a multi-stage stochastic optimization model to solve an inventory routing problem for the collection of recyclable municipal waste. The objective is the maximization of the total expected profit of the waste collection company. The decisions are related to the selection of the bins to be visited and the corresponding routing plan in a predefined time horizon. Stochasticity in waste accumulation is modeled through scenario trees generated via conditional density estimation and dynamic stochastic approximation techniques. The proposed formulation is solved through a rolling horizon approach, providing a rigorous worst-case analysis on its performance. Extensive computational experiments are carried out on small- and large-sized instances based on real data provided by a large Portuguese waste collection company. The impact of stochasticity on waste generation is examined through stochastic measures, showing the importance of adopting a stochastic model over a deterministic formulation when addressing a waste collection problem. The performance of the rolling horizon approach is evaluated, demonstrating that this heuristic provides cost-effective solutions in short computational time. Managerial insights related to different geographical configurations of the instances and varying levels of uncertainty are finally discussed.
Keywords: Routing; Waste collection; Multi-stage stochastic programming; Rolling horizon approach (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221724009329
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:323:y:2025:i:1:p:276-296
DOI: 10.1016/j.ejor.2024.11.041
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().