A branch and bound algorithm for continuous multiobjective optimization problems using general ordering cones
Weitian Wu and
Xinmin Yang
European Journal of Operational Research, 2025, vol. 326, issue 1, 28-41
Abstract:
Many existing branch and bound algorithms for multiobjective optimization problems require a significant computational cost to approximate the entire Pareto optimal solution set. In this paper, we propose a new branch and bound algorithm that approximates a part of the Pareto optimal solution set by introducing the additional preference information in the form of ordering cones. The basic idea is to replace the Pareto dominance induced by the nonnegative orthant with the cone dominance induced by a larger ordering cone in the discarding test. In particular, we consider both polyhedral and non-polyhedral cones, and propose the corresponding cone dominance-based discarding tests, respectively. In this way, the subboxes that do not contain efficient solutions with respect to the ordering cone will be removed, even though they may contain Pareto optimal solutions. We prove the global convergence of the proposed algorithm. Finally, the proposed algorithm is applied to a number of test instances as well as to 2- to 5-objective real-world constrained problems.
Keywords: Multiple objective programming; Global optimization; Branch and bound algorithm; Ordering cone; Efficient solution (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221725003303
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:326:y:2025:i:1:p:28-41
DOI: 10.1016/j.ejor.2025.04.045
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().