Dynamic appointment rescheduling with patient preferences
Tine Meersman,
Broos Maenhout and
Dieter Fiems
European Journal of Operational Research, 2025, vol. 326, issue 3, 498-514
Abstract:
This study examines patient-initiated appointment rescheduling with consideration of patient preferences. Online rescheduling policies are investigated for the selection and sequential offering of new appointments upon the arrival of a rescheduling request via a telephone call. Appointments are offered until the patient accepts one or the maximum number of offers is reached. The aim is to reschedule appointments using a weighted function to maximise the patients’ satisfaction, optimise the operational performance, and minimise the number of patients deferred to a future time horizon. Different patient types are taken into account characterised by their uncertainties in rescheduling, cancellation, no-show, and service duration. The rescheduling process is formulated as a stochastic dynamic scheduling problem and approximated using a Markov Decision Process (MDP). Two heuristic policies are proposed, referred to as the myopic stochastic and the MDP-based algorithms. Both policies apply a simulation-optimisation approach that considers patient preferences and expected operational performance. To determine the set of offered appointments, the MDP-based algorithm additionally accounts for expected future rescheduling requests. Computational experiments are performed on real-life instances. The results demonstrate that the two proposed policies yield solutions of high quality. The myopic stochastic policy outperforms the MDP-based policy when it is challenging to offer suitable slots due to high capacity utilisation or a lack of clear patient preferences. Conversely, the MDP-based algorithm delivers better results when capacity utilisation is lower and there is some variation in preferences across days and patients.
Keywords: OR in health services; Online appointment rescheduling; Markov decision process; Patient preferences; Sequential appointment offering (search for similar items in EconPapers)
Date: 2025
References: Add references at CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0377221725003613
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:ejores:v:326:y:2025:i:3:p:498-514
DOI: 10.1016/j.ejor.2025.05.005
Access Statistics for this article
European Journal of Operational Research is currently edited by Roman Slowinski, Jesus Artalejo, Jean-Charles. Billaut, Robert Dyson and Lorenzo Peccati
More articles in European Journal of Operational Research from Elsevier
Bibliographic data for series maintained by Catherine Liu ().