EconPapers    
Economics at your fingertips  
 

An internal thermal integration arrangement for multicomponent batch rectifier: 1. Feasibility and analysis

Amiya K. Jana

Energy, 2016, vol. 115, issue P1, 230-237

Abstract: Distillation has emerged as a potential candidate for thermal integration to improve the energy efficiency performance. In this contribution, a novel heat integrated distillation column (HIDiC) is proposed for batch rectifiers. Dividing the rectification tower into two sections, an internal thermal integration arrangement for the HIDiC column configuration is devised by installing a compressor and a throttling valve for pressure adjustment, and by designing a couple of internal heat exchangers (HEs) to promote the heat transfer between the trays of two divided rectifiers. Unlike the continuous HIDiC, the batch column is an unsteady state process that gives rise to a challenging problem in design and operation. Aiming to operate the batch HIDiC smoothly, a mechanism for heat supply management is proposed. This, in turn, leads to run the thermally coupled column at the same dynamical response with the conventional standalone column that is a prerequisite for a fair comparison between them in terms of energy efficiency, environmental and economic performance. Finally, the techno-economic feasibility of the proposed batch HIDiC rectifier is explored by simulating a multicomponent system.

Keywords: Internal thermal integration; Batch rectifier; Energy savings; Cost benefit; Emission reduction (search for similar items in EconPapers)
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421631218X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:115:y:2016:i:p1:p:230-237

DOI: 10.1016/j.energy.2016.08.105

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:115:y:2016:i:p1:p:230-237