Experimental investigation on potential of a concentrated photovoltaic-thermoelectric system with phase change materials
Tengfei Cui,
Yimin Xuan,
Ershuai Yin,
Qiang Li and
Dianhong Li
Energy, 2017, vol. 122, issue C, 94-102
Abstract:
Since the influence of temperature on the conversion efficiencies of photovoltaic (PV) cells and thermoelectric (TE) generators are totally different and opposite, the system operating temperature becomes a key parameter which significantly determines the utilization efficiency of the common PV-TE system on solar energy. In order to make the PV-TE system obtain higher energy utilization efficiency, phase change material (PCM) is incorporated to construct a novel PV-PCM-TE hybrid system to maintain the system operating at the ideal working temperature. The performance of such a novel hybrid system is experimentally studied corresponding to a number of practical working conditions. The temperature, efficiency, and output power of the hybrid system are compared with those of the pure PV system under the same circumstance. The effects of the optical concentrations ratio and cooling approaches on the conversion efficiency of the hybrid system are experimentally investigated. The whole conversion efficiencies of the hybrid system incorporated with TE generators with different values of dimensionless thermoelectric coefficient (ZT) are discussed. The present work reveals that such a hybrid system possesses a promising potential on the full-spectrum utilization of solar energy.
Keywords: Solar energy; Phase change material; Hybrid generation system; Photovoltaic cells; Thermoelectric generator (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (37)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217300877
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:122:y:2017:i:c:p:94-102
DOI: 10.1016/j.energy.2017.01.087
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().