Effect of electrodes separator-type on hydrogen production using solar energy
I.M. Sakr,
Ali M. Abdelsalam and
W.A. El-Askary
Energy, 2017, vol. 140, issue P1, 625-632
Abstract:
This paper presents an experimental study for hydrogen production using alkaline water electrolysis operated by solar energy. Attempts to produce pure hydrogen as well as pure oxygen for commercial demands are introduced. Two methods are used and compared for separation between the cathode and anode, which are acrylic separator and polymeric membrane. Further, the effects of electrolyte concentration, solar insolation, and space between the pair of electrodes on the amount of hydrogen produced and consequently on the overall electrolysis efficiency are investigated. It is found that the efficiency of hydrogen production is higher when using the polymeric membrane between the electrodes, in comparison with the acrylic separator. The experimental results show also that, the performance of alkaline water electrolysis unit is dominated by the electrolyte concentration and the gap between the electrodes. The gap of 5 mm leads to a higher hydrogen production rate than the gap of 10 mm.
Keywords: Hydrogen production; Separator type; Solar energy (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217315256
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:140:y:2017:i:p1:p:625-632
DOI: 10.1016/j.energy.2017.09.019
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().