EconPapers    
Economics at your fingertips  
 

Correlations between electrochemical resistances and surface properties of acid-treated fuel in coal fuel cells

Seongyong Eom, Seongyool Ahn, Kijoong Kang and Gyungmin Choi

Energy, 2017, vol. 140, issue P1, 885-892

Abstract: Herein, we investigate the relationship between fuel surface properties and inner resistances of direct carbon fuel cells (DCFCs) by subjecting raw coal to a liquid-phase chemical treatment and correlating its surface property changes (e.g., degree of oxidation, surface area, and ash composition) with those of electrochemical resistances. Fuel surface characteristics are analyzed by thermogravimetry, gas adsorption, and X-ray photoelectron spectroscopy, with correlations established using the Pearson correlation analysis. The obtained results show that the surface Si content is strongly correlated with electrolyte resistance due to influencing the concentration of carbonate ions. Moreover, charge transfer resistance is strongly negatively correlated with the surface oxygen content, since oxygenated functional groups (e.g., carbonyl and quinone moieties) enhance the oxidation of solid carbon by increasing its reactivity and wettability.

Keywords: Surface functional groups; Coal ash; Acid treatment; Charge transfer resistance; Electrolyte resistance (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544217315566
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:140:y:2017:i:p1:p:885-892

DOI: 10.1016/j.energy.2017.09.034

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:140:y:2017:i:p1:p:885-892