EconPapers    
Economics at your fingertips  
 

Impact of ambient temperature on supercritical CO2 recompression Brayton cycle in arid locations: Finding the optimal design conditions

Alberto de la Calle, Alicia Bayon and Yen Chean Soo Too

Energy, 2018, vol. 153, issue C, 1016-1027

Abstract: In this paper, we present a new method to determine the optimal design conditions of a supercritical CO2 recompression Brayton cycle with dry cooling based on plant location. These power cycles are gathering high interest in concentrated solar thermal power technologies, which are most likely to be deployed in arid areas where dry cooling is a strategic choice. However, the usual high ambient temperature associated with these locations affects negatively the cycle performance. The key selection of two design parameters, the recompression fraction and the compressor inlet temperature, can minimise this negative effect. The method presented here allows the adjustment of these two parameters maximising the annual generation of electricity and cycle efficiency simultaneously. The optimisation process analyses the drop in the cycle performance due to the yearly variation of ambient temperature at the specific location. To reduce the computational effort required, polynomial regressions extrapolate the results from a reduced set of design-point and off-design cycle simulations in a wide range of ambient and compressor inlet temperatures. As an example, the method is applied to three different locations demonstrating the existence of optimal design conditions and justifying the need to adjust these two key parameters for each specific location.

Keywords: Dry cooling; Recompression fraction; Compressor temperature; Annual electrical generation; Cycle efficiency; Modelica (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (21)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218306169
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:153:y:2018:i:c:p:1016-1027

DOI: 10.1016/j.energy.2018.04.019

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:153:y:2018:i:c:p:1016-1027