EconPapers    
Economics at your fingertips  
 

Influence of operation parameters on mode switching from electrolysis cell mode to fuel cell mode in a unitized regenerative fuel cell

Xian Ming Yuan, Hang Guo, Jia Xing Liu, Fang Ye and Chong Fang Ma

Energy, 2018, vol. 162, issue C, 1041-1051

Abstract: The process during mode switching from electrolysis cell mode to fuel cell mode is unclear. In this work, dynamic responses under different mode switching strategies from electrolysis cell mode to fuel cell mode are investigated using a unitized regenerative fuel cell with an oxygen side transparent window. Effects of time interval between reactant and current switching, gas flow rate, fuel cell mode startup current density, and gas purging time on the cell voltage are studied. The experimental results indicate that pre-reactant switching is an effective way to consume the residual water at the end of an electrolysis cell mode, and a sufficient time interval between reactant and current transition can promote the smooth mode switching under low current density. Oxygen flow rate increase can promote smooth startup of FC mode when the time interval between reactants and current transitions is not long enough, and hydrogen flow rate has little effect on the mode switching from EC mode to FC mode. In addition, the method, combining electrolysis reaction and gas purge, can efficiently eliminate the residual water and prevent water-starved condition when FC mode starts up.

Keywords: Unitized regenerative fuel cell; Mode switching; Pre-reactant switching; Switching strategies (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218316311
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:162:y:2018:i:c:p:1041-1051

DOI: 10.1016/j.energy.2018.08.095

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:162:y:2018:i:c:p:1041-1051