EconPapers    
Economics at your fingertips  
 

Data-driven heating and cooling load predictions for non-residential buildings based on support vector machine regression and NARX Recurrent Neural Network: A comparative study on district scale

D. Koschwitz, J. Frisch and C. van Treeck

Energy, 2018, vol. 165, issue PA, 134-142

Abstract: Predicting building energy consumption is essential for planning and managing energy systems. In recent times, numerous studies focus on load forecasting models dealing with a wide range of different methods. In addition to Artificial Neural Networks (ANN), especially Support Vector Machines (SVM) have been studied. Various research work showed the success and superiority of ANN and SVM for load predictions, where frequently, SVM outperformed ANN models. In this study, data-driven thermal load forecasting performance of ε-SVM Regression (ε-SVM-R) based on a Radial Basis Function (RBF) and a polynomial kernel is compared to the outcome of two Nonlinear Autoregressive Exogenous Recurrent Neural Networks (NARX RNN) of different depths. For demonstration, historical data from a non-residential district in Germany is used for training and testing to predict monthly loads. The evaluation of the resulting predictions show that NARX RNNs yields higher accuracy than (ε-SVM-R) models, in combination with comparable computational effort.

Keywords: District heating and cooling; Urban energy analysis; Load forecasting; Support vector machine regression; NARX recurrent neural network (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (40)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218318322
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pa:p:134-142

DOI: 10.1016/j.energy.2018.09.068

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:165:y:2018:i:pa:p:134-142