Thermodynamic study on a novel lignite poly-generation system of electricity-gas-tar integrated with pre-drying and pyrolysis
Rongtang Liu,
Ming Liu,
Peipei Fan,
Yongliang Zhao and
Junjie Yan
Energy, 2018, vol. 165, issue PB, 140-152
Abstract:
The efficient and clean use of lignite is strategically important to sustainable development. Predrying technology is a competitive approach to solve the utilization issue of the high moisture, and the pyrolysis technology is an ideal upgrading method to realize high value-added components extraction. However, the two technologies are normally used separately. By integrating the two technologies, the cascade utilization of energy may be realized, and the utilization efficiency of lignite may be increased accordingly. Therefore, a steam predrying coupled with lignite-pyrolysis power system (PPPS) is proposed in this paper. Theoretical models are developed on the basis of thermodynamics to assess the properties of the proposed system, and a case analysis is performed to determine the quantitative consequences of the PPPS. Moreover, energy and exergy analyses are performed to uncover the energy saving mechanism. Results indicate that the proposed system can evidently increase the thermal efficiency by approximately 4.43% relatively based on the higher heating value, and by approximately 4.45% relatively based on the lower heating value. The PPPS can noticeably increase the exergy efficiency by approximately 4.48% relatively owing to the integration of the lignite predrying and pyrolysis technologies.
Keywords: Lignite predrying; Pyrolysis; Integration; Energy and exergy analyses (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218319418
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pb:p:140-152
DOI: 10.1016/j.energy.2018.09.169
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().