EconPapers    
Economics at your fingertips  
 

Experimental investigations on air/particle flow characteristics in a 2000 t/d GSP pulverized coal gasifier with an improved burner

Neng Fang, Zhengqi Li, Jiaquan Wang, Bin Zhang, Lingyan Zeng, Zhichao Chen, Haopeng Wang, Xiaoying Liu and Xiaoyan Zhang

Energy, 2018, vol. 165, issue PB, 432-441

Abstract: Removing end surfaces of a multi-channel burner which is the most commonly used burner type in entrained flow gasifiers could ease the risks of burner and cooling screens burning. On an air-particle test facility, experiments were conducted to investigate the influence of the improvements in a 2000 t/d GSP gasifier on the air/particle flow characteristics using a particle dynamics anemometer. For GSP burner and improved GSP burner (IGSP burner), the M-shaped distribution of mean axial velocity appears at the cross-section x/d = 4 and 6, respectively. By removing the end surface, the air and particles first diffusing to the near-wall region under the IGSP burner is delayed resulting in a lower risk that the cooling screen is burned. In IGSP burner, the central recirculation zone is smaller in both radial and axial directions than in GSP burner; removing the end surface could reduce the risk of burner being burned. Industrial-sized experimental results uncovered that in comparison with the prior GSP burner, the heat absorption of the burner support and the four parallel cooling screens for the IGSP burner decreased by 22% and 53%, respectively, which effectively verified the validity of the structural improvement.

Keywords: Entrained flow pulverized coal gasification; Burner; Air/particle flow; PDA (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218319868
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pb:p:432-441

DOI: 10.1016/j.energy.2018.10.005

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:432-441