EconPapers    
Economics at your fingertips  
 

Bifunctional hydrogen evolution and oxygen evolution catalysis using CoP-embedded N-doped nanoporous carbon synthesized via TEOS-assisted method

Yuanyuan Zhang, Haohao Sun, Yunfeng Qiu, Enhao Zhang, Tiange Ma, Guang-gang Gao, Changyan Cao, Zhuo Ma and PingAn Hu

Energy, 2018, vol. 165, issue PB, 537-548

Abstract: Bifunctional electrocatalysts for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is of fundamental significance for efficient solar-water splitting devices. Herein, we report the preparation of CoP nanoparticles embedded in N-doped mesoporous carbon via a simple yet facile route involving the polymerization of dopamine, Co salts and Si precursor, as well as the subsequent phosphidation treatment. The as-prepared catalysts not only can efficiently catalyze the HER in acidic and basic media with overpotential of 139 and 203 mV to reach current density of 10 mA cm−2, but also favors the sluggish OER process due to the presence of cobalt oxy-hydroxide on the surface of CoP, showing overpotential of 345 mV to acquire the same current density. The efficient catalytic activities are, highly probably, attributed to the favorable mass-transfer in the nanoporous carbon, interfacial effects at nitrogen dopants enriched site, small charge transfer resistance, as well as synergistic effect between active species and underlying support. The catalysts are appealing to serve as the promising bifunctional electrocatalysts for overall water-splitting with overpotential of 1.72 V to reach current density of 10 mA cm−2.

Keywords: Bifunctional electrocatalyst; Hydrogen evolution reaction; Oxygen evolution reaction; Cobalt phosphide; TEOS-Assisted synthesis (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421831973X
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:165:y:2018:i:pb:p:537-548

DOI: 10.1016/j.energy.2018.09.195

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:165:y:2018:i:pb:p:537-548