EconPapers    
Economics at your fingertips  
 

Numerical and experimental study on the thermal performance improvement of a triple glazed window by utilizing low-grade exhaust air

Chong Zhang, Wenjie Gang, Jinbo Wang, Xinhua Xu and Qianzhou Du

Energy, 2019, vol. 167, issue C, 1132-1143

Abstract: Exhaust air insulation building envelope can recover and utilize the low-grade energy inherent in the exhaust air to prevent the heat transfer through the building envelope. The study investigates a triple glazed exhaust-air window (TGEW), which can switch its operation mode between the cooling and heating season. A two-dimensional numerical model was proposed to analyze the conjugated heat transfer in the TGEW. The experiment test of the TGEW was conducted and used to validate the proposed two-dimensional numerical model. The utilization efficiency of exhaust air within the TGEW was experimentally investigated under real outdoor weather condition. Numerical simulations were carried out to investigate the thermal performance improvement of the triple-glazed window by utilizing the exhaust air. Hourly and accumulated cooling/heating loads of the TGEW were calculated and compared with that of a conventional triple-glazed window (TGW). Results indicate that compared to the conventional TGW, the TGEW can reduce 25.3% and 50.1% of the annual accumulated cooling and heating loads. This demonstrates that the TGEW is applicable to the buildings installed with the fresh air supply system and can potentially contribute to decrease the cooling and heating loads through the window by utilizing the exhaust air.

Keywords: Triple glazed window; Exhaust air insulation; Heat recovery; Experimental investigation; Building energy efficiency (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218322874
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:167:y:2019:i:c:p:1132-1143

DOI: 10.1016/j.energy.2018.11.076

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:167:y:2019:i:c:p:1132-1143