Wind velocity distribution reconstruction using CFD database with Tucker decomposition and sensor measurement
Li Qin,
Shi Liu,
Yi Kang,
Song An Yan,
H. Inaki Schlaberg and
Zhan Wang
Energy, 2019, vol. 167, issue C, 1236-1250
Abstract:
Wind forecasting holds the key to the management of wind power. Previous vector or matrix wind forecast methods may not best reflect the intrinsic inter relationship among the wind velocity components of a three-dimensional wind field. Alternatively, a tensor-based model is developed to reconstruct the wind velocity distribution within a short period of time, enabling a new way for wind forecasting. A third-order CFD database is established by CFD simulations and the Tucker decomposition is used to obtain the tensor basis off site. Then in real time, the tensor basis can be employed to rapidly reconstruct wind velocity distributions in any direction, which can also form a new way to reconstruct wind velocity distribution in 3-D spaces. A comparison of the maximum and relative reconstruction errors shows that the newly proposed method performs better than the authors' previously published wind field reconstruction method. The influences of sampling rate, noise level and sensor distributions on the reconstruction error are also discussed in this paper. Finally, a wind tunnel experiment is carried out to evaluate the accuracy of the proposed method, and in most cases, the experimental results show that relative errors drop around 0.03%-0.4% and maximum errors drop around 0.02%-1.7% when using the newly proposed method.
Keywords: Wind velocity distribution; Third-order CFD database; Tucker decomposition; Sensor measurement (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218322175
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:167:y:2019:i:c:p:1236-1250
DOI: 10.1016/j.energy.2018.11.013
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().