On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code
Gedeon Mauger,
Nicolas Tauveron,
Fabrice Bentivoglio and
Alain Ruby
Energy, 2019, vol. 168, issue C, 1002-1016
Abstract:
As the share of intermittent energy sources is increasing, the dynamic modeling of thermal power plants including their power conversion system gets researchers' attention. Recent applications require transient simulations of high-pressure nitrogen closed Brayton cycle for which the ideal gas assumption is no longer verified. In this work, the REFPROP real gas equation of state and pressure drop correlations suitable for high Reynolds numbers have been implemented in the CATHARE-3 code. Moreover, new real gas turbomachinery and sonic flow models have been developed and integrated in the code. Relative errors obtained for the nominal state of a high-pressure nitrogen closed Brayton cycle are in the range −3%/+0.8%. A detailed analysis of real gas effects is carried out on the heat exchangers heat flux and the piping pressure losses. The new sonic flow computed during a loss of coolant accident is in the best possible agreement with literature experimental results. With regard to the turbomachinery, the new real gas model creates a pressure dependence that brings compressors closer to the choke region when the pressure drops in the cycle. This work is expected to provide an efficient and reliable simulation tool for transient analysis of real gas closed Brayton cycles.
Keywords: CATHARE-3 code; Brayton cycle dynamics; Turbomachinery off-design performance; Real gas equation of state; Sonic flow (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218322746
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:168:y:2019:i:c:p:1002-1016
DOI: 10.1016/j.energy.2018.11.063
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().