Assessment of damping coefficients of power take-off systems of wave energy converters: A hybrid approach
Claudio A. Rodríguez,
Paulo Rosa-Santos and
Francisco Taveira-Pinto
Energy, 2019, vol. 169, issue C, 1022-1038
Abstract:
The damping coefficient of the power take-off (PTO) system is a key parameter in the performance assessment of a wave energy converter (WEC). However, since in most WEC studies the focus is mainly on the absorbed power, damping estimation is generally overlooked on the assumption that a single constant coefficient can properly characterize the WEC's damping of a given configuration for all wave conditions. Recently, while analyzing the experimental tests of CECO, a floating-point absorber WEC, significant discrepancies were found among their experimental responses under different incident waves. Instead of attributing those differences to nonlinear hydrostatic or Froude-Krylov effects, it was hypothesized that variations in the PTO damping associated to incident waves was the main cause. This study presents the experimental evidences of that behavior for regular and irregular waves. Furthermore, a hybrid approach for the assessment of damping coefficients is proposed and applied to CECO's experimental responses. The results demonstrated that: a) damping coefficients were significantly affected by wave conditions; b) higher PTO damping coefficients were obtained for milder irregular waves than for rougher regular waves; c) the hybrid approach reliably and efficiently estimated the WEC power in regular and irregular waves.
Keywords: Wave power; WEC; PTO; Model tests; Numerical simulations; Irregular waves (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218324472
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:169:y:2019:i:c:p:1022-1038
DOI: 10.1016/j.energy.2018.12.081
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().