Robust neuro-fuzzy sliding mode control with extended state observer for an electric drive system
Ibrahim Farouk Bouguenna,
Ahmed Azaiz,
Ahmed Tahour and
Ahmed Larbaoui
Energy, 2019, vol. 169, issue C, 1054-1063
Abstract:
The choice of the control techniques has a positive impact on the traction chain particularly disturbance rejection ability and the energy management in the electric vehicle (electric motor, inverter, transmission, ect.). In this paper, a robust neuro-fuzzy-sliding mode control (RNFSMC) with extended state observer (ESO) technique is applied on the traction chain of the electric vehicle (Permanent magnet synchronous motor PMSM, Inverter, Transmission). However, most of the existing strategies of control that are applied on the traction chain lead to chattering phenomena, reducing the electric motor performance and disturbance rejection ability without forgetting the bad energy management on board the electric vehicle. To further enhance the performance of the traction chain, a hybrid control scheme is used to severally decrease the chattering phenomena in the PMSM electric motor and evolve the disturbance rejection ability which employs two types of controllers: Neuro-fuzzy sliding mode control on the direct current loop and ESO controller on both speed, and quadrature current loops taking into account the dynamic of the vehicle. Simulations by Matlab/Simulink are used to indicate the validity of the planed scheme on the closed-loop system. The simulation results show the effectiveness of the proposed control strategy with desired tracking accuracy.
Keywords: Electric vehicle; Dynamic; PMSM; Neuro-fuzzy sliding mode control; Extended state observer ESO (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544218324678
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:169:y:2019:i:c:p:1054-1063
DOI: 10.1016/j.energy.2018.12.101
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().