High-temperature PCM-based thermal energy storage for industrial furnaces installed in energy-intensive industries
Patricia Royo,
Luis Acevedo,
Victor J. Ferreira,
Tatiana García-Armingol,
Ana M. López-Sabirón and
Germán Ferreira
Energy, 2019, vol. 173, issue C, 1030-1040
Abstract:
The energy considered as waste heat in industrial furnaces owing to inefficiencies represents a substantial opportunity for recovery by means of thermal energy storage (TES) implementation. Although conventional systems based on sensible heat are used extensively, these systems involve technical limitations. Latent heat storage based on phase change materials (PCMs) results in a promising alternative for storing and recovering waste heat. Within this scope, the proposed PCM-TES allows for demonstrating its implementation feasibility in energy-intensive industries at high temperature range. The stored energy is meant to preheat the air temperature entering the furnace by using a PCM whose melting point is 885 °C. In this sense, a heat transfer model simulation is established to determine an appropriate design based on mass and energy conservation equations. The thermal performance is analysed for the melting and solidification processes, the phase transition and its influence on heat transference. Moreover, the temperature profile is illustrated for the PCM and combustion air stream. The obtained results prove the achievability of very high temperature levels (from 700 to 865 °C) in the combustion air preheating in a ceramic furnace; so corroborating an energy and environmental efficiency enhancement, compared to the initial condition presenting an air outlet at 650 °C.
Keywords: Phase change materials; High-temperature thermal energy storage; Energy-intensive industries; Waste heat recovery; Heat transfer model simulation (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219303172
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:173:y:2019:i:c:p:1030-1040
DOI: 10.1016/j.energy.2019.02.118
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().