EconPapers    
Economics at your fingertips  
 

Solar pyrolysis of cotton stalk in molten salt for bio-fuel production

Yingpu Xie, Kuo Zeng, Gilles Flamant, Haiping Yang, Nian Liu, Xiao He, Xinyi Yang, Ange Nzihou and Hanping Chen

Energy, 2019, vol. 179, issue C, 1124-1132

Abstract: Solar pyrolysis of cotton stalk was carried out in a molten salt reactor heated by 4 kW solar simulator. The effects of pyrolysis temperature and mass ratio of molten salt to biomass on pyrolysis products properties were investigated. The use of molten salt as pyrolysis media increased gas yield. At 850 °C, the gas yield (mainly of CO and H2) continued to rise from 41.35 wt% to 82.57 wt% when mass ratio of molten salt to cotton stalk increased from 0 to 10. Pyrolysis in molten salt significantly decreased bio-oil acids and phenols, while increased aromatics among pyrolysis temperature range of 450–850 °C. There was positive correlation between the increased content of aromatics and mass ratio of molten salt to cotton stalk (from 0.5 to 10). The bio-char carbon content showed a general decreasing trend while oxygen, BET surface area and pore volume increased with using molten salt as pyrolysis media. Bio-char obtained from CS1MS5 pyrolysis at 850 °C had the highest BET surface area of 972.57 m2/g and the biggest total pore volume of 0.6203 cm3/g. High quality pyrolysis products with more uniform chemistry suggest catalytic reactions occur inside the solar reactor due to the intermediates degradation with molten salt.

Keywords: Solar pyrolysis; Molten salt; Cotton stalk; Bio-gas; Bio-char (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219309181
Full text for ScienceDirect subscribers only

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:179:y:2019:i:c:p:1124-1132

DOI: 10.1016/j.energy.2019.05.055

Access Statistics for this article

Energy is currently edited by Henrik Lund and Mark J. Kaiser

More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().

 
Page updated 2025-03-19
Handle: RePEc:eee:energy:v:179:y:2019:i:c:p:1124-1132