Energy flexibility for heating and cooling based on seasonal occupant thermal adaptation in mixed-mode residential buildings
Chenqiu Du,
Baizhan Li,
Wei Yu,
Hong Liu and
Runming Yao
Energy, 2019, vol. 189, issue C
Abstract:
The energy flexibility for heating and cooling has not been fully explored though human thermal adaptation has been acknowledged in achieving energy savings in buildings. The aim of this study is to explore the capacity for heating/cooling flexibility in residential buildings in the hot summer and cold winter zone in China, by investigating the year-round dynamic changes in the thermal adaptation of occupants. A 13,005-set data set was extracted from a nation-wide field survey database. The results showed that the measured indoor temperatures were linearly related to the outdoor temperature in transient seasons but were discrete in the summer/winter seasons due to the mixed-mode operations of heating/cooling devices. The occupants’ neutral temperatures varied with outdoor temperatures in step with seasonal changes. Flexibility of temperature settings during the whole heating and cooling periods have been demonstrated, incorporating the dynamic thermal adaptation changes of occupants; such implementation has been estimated with great energy saving potential (e.g. 34.4% in Nanjing). This work contributes to the quantitative understanding of the role of human thermal adaptation in the smart control of residential energy management. It provides evidence for policy-making for flexible thermal design codes in building, to discourage excessive cooling/heating demands.
Keywords: Residential buildings; Dynamic thermal adaptation; Heating and cooling; Temperature settings; Energy flexibility (search for similar items in EconPapers)
Date: 2019
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S0360544219320341
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:189:y:2019:i:c:s0360544219320341
DOI: 10.1016/j.energy.2019.116339
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().