Impact of changing compression ratio on engine characteristics of an SI engine fueled with equi-volume blend of methanol and gasoline
B.S. Nuthan Prasad,
Jayashish Kumar Pandey and
G.N. Kumar
Energy, 2020, vol. 191, issue C
Abstract:
In the present investigation, experiments were conducted in wide open throttle condition (WOT) for different speed ranging from 1200 rpm to 1800 rpm at an interval of 200 on a single-cylinder four-stroke variable compression ratio (VCR) SI engine. The engine fueled with equi-volume blend of methanol/gasoline fuel, while 14° BTDC ignition timing is maintained for all three different compression ratios (8, 9 & 10). Increasing the compression ratio from CR8 to CR10 for the methanol/gasoline blend has improved combustion efficiency by increasing the peak pressure and net heat release value by 27.5% and 30% respectively at a speed of 1600 rpm. The performance results show a good agreement of improvisation of 25% increase in BTE, and BSFC reduction by 19% at compression ratio 10:1. At higher compression ratio 10:1, there was a significant decrease observed in CO and HC by 30–40%, and the same trend is observed at all speeds; however, NOx emission increased with the increasing CR.
Keywords: Methanol-gasoline blend; Variable compression ratio; Combustion; Emission (search for similar items in EconPapers)
Date: 2020
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (14)
Downloads: (external link)
http://www.sciencedirect.com/science/article/pii/S036054421932300X
Full text for ScienceDirect subscribers only
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:eee:energy:v:191:y:2020:i:c:s036054421932300x
DOI: 10.1016/j.energy.2019.116605
Access Statistics for this article
Energy is currently edited by Henrik Lund and Mark J. Kaiser
More articles in Energy from Elsevier
Bibliographic data for series maintained by Catherine Liu ().